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Abstract

A quasi-conservative formulation for compressible flows with interfaces including both capillary and viscous effects

is developed. The model involves: (i) acoustic and convective transport; (ii) surface tension effects introduced as an

extension of the CSF method (Brackbill et al.) to compressible flows; (iii) viscous effects. The interfaces are considered

as diffused zones. Every point of the flow is correctly described thanks to a mixture equation of state based on energy

conservation and pressure equilibrium. The model is thus valid in each pure fluid as well as at interfaces. A Godunov

type method, that enables interface capturing, is developed and used whatever the mesh point. Numerical tests are per-

formed over a wide range of physical situations involving surface tension, compressibility, gravity, viscosity and large

density ratios. Tests involving break-up and coalescence are considered to show the ability of the method to deal with

dynamic appearance and disappearance of interfaces in an Eulerian framework.
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1. Introduction

Flows with interfaces are part of our daily life. They are widespread, complex and very diverse. They are

thus involved in many industrial processes from off-shore engineering to automotive (carburant injection

[3,5]) and chemical engineering. Moreover, the interface is the area where complex physics may occur (sur-

face tension, heat and mass transfers). So building of a model and a method to describe flows with inter-

faces seems of great interest from both theoretical and industrial point of view. Therefore, many
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approaches have been developed to solve such problems both in an incompressible [23,25,41,57] and in a

compressible [1,2,6,31,33,46] framework. Associated numerical methods consider that interfaces remain

sharp while others handle smeared contact discontinuities.

The first type of numerical methods, we call ‘‘Sharp Interface Methods’’ (SIM), consists of four main

families. The first widespread used techniques are the Lagrangian [7] and ALE (Arbitrary Lagrangian Eule-
rian) methods [16,26,50], where the interface is a coordinate line which evolves and deforms at the local flow

velocity. They are the most natural methods which consider interfaces as true discontinuities. The second

family corresponds to Front-Tracking methods. On the contrary of the preceding methods, front tracking

procedures are performed on a fixed grid. They combine Eulerian solvers for flow far from interfaces and

specific solvers closed to it. In spite of the hardness of the problem, methods, which are derived from this

concept, give impressive results even in three dimensions [20]. The third family is the interface reconstruc-

tion techniques which are more widespread and quite easier to code [25]. In this case, interfaces are not ex-

actly tracked, but are rebuilt thanks to the determination of advected phase volume fractions [23,42,43].
The fourth family consists of the Level Set methods [39], which combine front location and thermodynamic

or extrapolation procedures to compute flow variables [41,51,52,62].

The second type of numerical methods, we call ‘‘Diffuse Interface Methods’’ (DIM) is essentially based

on Eulerian formulations. On the contrary of SIM, DIM do not describe interfaces as discontinuities but

as continuous zones where the transition from one medium to the other is quite smooth. Diffusing the

interface implies that those methods create an artificial mixture zone close to the interface. The thermo-

dynamic parameters in this mixture are thus unknown so that conventional thermodynamic treatment is

no longer valid. In order to solve this problem, some authors have built Eulerian models for two-phase
flows where the equations remain valid in pure fluids as well as at the interface. The equations are then

solved by a single numerical procedure [1,2,38,45,40]. The challenge is to get consistent thermodynamic

laws for the artificial mixture. To do this, some authors proposed to build governing equations for equa-

tion of state parameters [1,45]. This strategy has been retained and improved by Massoni et al. [38] and

Allaire et al. [2]. In those references, the authors build a mixture equation of state which describes cor-

rectly pure fluids as well as artificial mixtures. In the mean time, other attempts to describe two-phase

flows with several velocities have been developed. In [46], a method is proposed which is based on a

two-phase flow model with seven equations, initially suggested in [6]. This method can be employed with
various equations of state and in a wide range of physical applications such as flows with interfaces [46],

cavitation and detonation waves [47]. One of its advantages relies on its ability to compute the creation

and the evolution of the interfaces.

In this paper, we show the connection between two-phase flow mixture methods [6,46] where each fluid

has its own velocity, pressure and density, and homogenous models with single pressure and velocity such

as those presented in [2,38,40], thanks to an asymptotic analysis. Indeed, our goal is to introduce viscous

effects and capillary ones into similar type of modelling. Thanks to the link between the two preceding dif-

ferent modelling approaches, viscous effects are easily introduced into the DIM, extending thus the model
of these authors and reaching the first goal of the present modelling issues.

The second modelling issue corresponds to capillary effects in a compressible framework. Eulerian cap-

illary-compressible flow models are present in the literature [11,29,30]. However, those models present some

drawbacks for the applications we are here interested in. In these models, surface tension is a genuine char-

acteristic of the fluids and an interface length scale, g, has to be set to correctly describe interfaces. This

length scale g is usually very small (g . 10�8 m) so that it may lead to very difficult computational issues

to get an accurate space and time interface resolution. Moreover, this approach is valid only when miscible

fluids (liquid and its vapour) are present. At last, literature results show only low density ratios
computations.

In the present article we are interested in compressible flows with interfaces separating non-miscible flu-

ids such as air/water flows whose density ratio may be quite large. In order to succeed in modelling capillary
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effects within a compressible two-phase flow framework, we extend the CSF method of Brackbill [8] to com-

pressible fluids and embed it into the DIM family. It appears that the resulting model structure is very sim-

ilar to second gradient theory models [11,29,30]. Nevertheless, major differences are to be noticed especially

regarding thermodynamics and the interface length scale g, which is no longer present.

The next challenge is to numerically solve this model. It will be shown that the new model can be con-
sidered hyperbolic according that geometrical variables of the model (main curvature j) are frozen with

respect to flow variables. A specific hyperbolic solver is thus developed with an exact Riemann solver.

The conservative formulation of the capillary model enables the derivation of an appropriate finite volume

scheme including capillarity and dissipative effects. Boundary conditions are examined in particular wetting

wall boundary conditions.

This article is thus organised as follows. In the first section, we derive the parent two-phase flow model

with two-velocities. It is obtained by considering that each phase is separately governed by the Navier–

Stokes equations. An averaging procedure is then applied onto the system to get the sought equations. This
parent model involves pressure and velocity relaxation terms that control the rate at which mechanical

equilibrium is reached. Assuming that those relaxation terms tend to infinity, an asymptotic analysis is per-

formed to get the two-phase transport model with a single velocity including dissipative effects.

In the second section, capillary effects are modelled assuming inviscid fluids. The CSF method is used to

include surface tension phenomena in the momentum equation. This approach is here extended to com-

pressible framework by including surface tension energy contribution. A conservative formulation is then

obtained.

In the third section, a mathematical study is addressed to the system including capillarity (eigenvectors
and eigenvalues, hyperbolicity). Those ingredients are used to build a Godunov type scheme to compute

conservative fluxes as well as volume fraction advection.

In the last section, a wide variety of physical situations are studied as numerical examples. Low speed

flows (droplet break-up, rise of gas bubble) as well high speed flows (shocks, underwater explosions) are

considered. First some analytical solutions are recovered: Laplace formula and deformed drop oscillations.

Second, drop creation and breakup tests show the ability of the method to manage dynamic appearance

and disappearance of free interfaces. Third, two-dimensional viscous liquid jet instabilities show that the

method is able to deal with fluids with large density ratios. In the end, rise of gas bubbles in a liquid bulk,
underwater explosion and drop collision tests show that the approach correctly treats problems with com-

plex physics. These tests show very good agreement with experiments and analytical data.
2. Compressible flow model building

As mentioned earlier, interface problems in the context of Diffuse Interface Methods can be solved either

by single pressure and velocity models [1,2,31,38,45] or two pressures and velocities two-phase flow models
including relaxation [46,47]. This second type of models has some particular advantages that would be use-

ful to keep. Here we propose a link between those approaches on the basis of an asymptotic analysis of the

compressible multi-phase flow model (seven equations). This analysis follows the one of Kapila et al. [31]

which was done in another context (granular materials) and the recent work of Murrone and Guillard [40].

It enables the extension of Massoni et al. [38] and Allaire et al. [2] models to viscous effects. Capillary effects

are not considered hereafter. This issue will be addressed in Section 3.

2.1. The parent model with viscous effects

To obtain the parent compressible two-phase flow model we assume each phase k is governed by the

Navier–Stokes equations. We then select the fluid k by multiplying the Navier–Stokes equations by the
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characteristic function of phase k, vk (vk = 1 when the point is in phase k and vk = 0 otherwise). An aver-

aging procedure, similar to that used by Drew [13,4], is then applied onto the system and leads to the final

equations where some specific terms appear. Those terms express the interaction forces and work whose

role is to drive the flow back to mechanical equilibrium. Assuming that the mixture is composed of phase

k and phase k 0, the governing equations for phase k are thus:
oak
ot þ uI

!� rak
��! ¼ - ðPk � Pk0 Þ þ ðP lk � P lk0 Þ

� �
;

oakqk
ot þ divðakqk uk

!Þ ¼ 0;

oakqk uk
!

ot þ divðakqk uk
!� uk!Þ þrðakP kÞ

�����!
¼ div
�!

ak��skð Þ þ P Irak
��!� ��sIrak

��!þ k uk0
�!� uk!
� �

;

oakEk
ot þ divðakðEk þ PkÞuk!Þ ¼ div ak��sk � uk!

� �
þ P I uI!� rak

��!� u!I � ��sI � rak
��!� �

�-wI ðPk � Pk0 Þ þ ðP lk � P lk0 Þ
� �

þ kuI!ð uk0�!� uk!Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð1Þ
with wI ¼ P I þ P lI . We note qk, ak, uk
!, Pk and ek the partial density, the volume fraction, the velocity vec-

tor, the pressure and the internal energy for each phase k respectively. The total energy, Ek, is defined as
Ek ¼ qkek þ
1

2
qk uk
!� uk!.
Pk0 and uk0
�! are the variables of the other phase. PI and uI! are called the average interface pressure and

velocity. In the state of the art, several expressions are given for those quantities. For instance, in [6] PI

equals the gas pressure while uI
! equals the condensed phase velocity:
P I ¼ Pk0 ;

u!I ¼ u!k.

�
ð2Þ
It is useful to note that the symmetric option:
P I ¼ Pk;

u!I ¼ u!k0

�
ð3Þ
is possible as well. More sophisticated estimates have recently been proposed [48,4]:
P I ¼ ZkP k0 þ Zk0Pk
Zk þ Zk0

þ sign oak
ox

� � uk0 � ukð ÞZkZk0

Zk þ Zk0
;

uI ¼ Zkuk þ Zk0uk0
Zk þ Zk0

þ sign oak
ox

� �
Pk0 � Pk
Zk þ Zk0

;

8><
>: ð4Þ
where Z represents the acoustic impedance (Z = qc).
Nevertheless, the choice of PI and u!I has no consequences onto the asymptotic analysis since the expan-

sions are made closed to an equilibrium state where all pressures and velocities are equal. The simplest ana-

lytical guess (2) is thus retained to perform the following analysis.

The term P lk strongly depends on the problem under study. It represents the integration of viscous stres-

ses over the interfaces, which are present into a two-phase control volume. In order to simplify such a cal-
culation, we impose a structure to the mixture: we assume that the microscopic mixture between liquid and

gas is made of small spherical inclusions (bubbles or drops). In this case, the viscous ‘‘pressure’’ P lk reads,

following [48],
P lk ¼
4

3
lk

_akak0

ak
;
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where lk represents the dynamic viscosity of phase k and _ak ð¼ -DðP þ P lÞÞ the volume fraction variation

(the right-hand side of the first equation of system (1).

Thus system (1) is able to model non-equilibrium two-phase mixtures in the presence of viscous effects.

We note the presence of pressure and velocity relaxation terms, kD u! and -D(P + Pl), which drive the sys-

tem back to mechanical equilibrium. The relaxation parameters k and - control the rate at which this equi-
librium is reached.

This set of equations is very similar to a rather general model developed by Baer and Nunziato [6]. It has

first been used to compute detonation waves in granular mixtures. More recently Saurel and Abgrall [46]

have used its formalism to solve interface problems as well as cavitation in liquids [47] (see also the non-

equilibrium approach of Le Metayer et al. [34]), or mixtures of turbulent fluids [48].

2.2. Asymptotic analysis of the parent multi-phase flow model with stiff relaxation

Relaxation terms drive the system back to mechanical equilibrium. To describe flows with interfaces,

jumps conditions across the contact discontinuity must be fulfilled. Such a goal can be reached by imposing

instantaneous pressure and velocity equilibrium [46]. In their numerical algorithm the authors use a proce-

dure where k and - tend to infinity such that pressures and velocities in both phases relax toward an equi-

librium state at any time. The limit model corresponding to such a relaxation procedure seems of great

interest for the modelling of flows with interfaces. Such a model is determined by the analysis summarised

hereafter, following the lines of Kapila et al. [31].

We thus determine the limit system by asymptotic reduction of system (1), where viscous effects are ac-
counted for, as k and - tend to infinity. Phases are denoted by subscripts 1 and 2. Moreover, we recall that:

PI = P2, wI = w2, u!I ¼ u1!. In order to carry out the asymptotic analysis, k and - are written in the follow-

ing form:
k ¼ 1

e
and - ¼ 1

e
where e ! 0þ.
The two-phase flow model (1) can be written in the general form under primitive variable U:
oU
ot

¼ F ðUÞ þ 1

e
WðUÞ;
where
U ¼

a1
a1q1

u1!

P 1

a2q2

u2!

P 2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

and WðUÞ ¼

P 1 � P 2 þ P l1 � P l2

0

u2!� u1!

�ðw2 � q2
1K1ÞðP 1 � P 2 þ P l1 � P l2Þ

0

�ðu2!� u1!Þ
ðw2 � q2

2K2ÞðP 1 � P 2 þ P l1 � P l2Þ � ku2!� u1
!k2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
.

F and W are regular enough functions close to the mechanical equilibrium state, Uo, to allow a Taylor

expansion. F depends on U but also on U-space derivatives. Assuming state U can be expressed as a

sum of a constant state with respect to e and a small fluctuation of order e and of magnitude U1 we get
U e ¼ Uo þ eU 1.
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Thus we obtain on one hand,
F ðU eÞ ¼ F ðUoÞ þ e
oF ðUÞ
oU

ðUoÞU 1
and on the other hand
WðU eÞ ¼ WðUoÞ þ e
oWðUÞ
oU

ðUoÞU 1.
Those equations become as asymptotic analysis is carried out:

(i) At 1
e order, we get a necessary condition for the system to be consistent:
8e > 0
WðUoÞ

e
¼ 0 which is equivalent to WðUoÞ ¼ 0.
(ii) At 0 order, we get the first form of the reduced model for flows with interfaces:
oUo

ot
¼ F ðUoÞ þ

oW
oU

ðUoÞU 1.
2.3. Reduced model including viscous effects

The conditionW(Uo) = 0 applied to the general multi-phase flow model (1) show that velocities and pres-

sures are equal at zero order. The pressure equilibrium is due to the fact that the �viscous pressures� P l1 and

P l2 vanish at zero order because _ak is zero when equilibrium is reached. The limit of this model when relax-
ation coefficients tend to infinity gives the reduced model we were seeking. Indeed, after some calculation

and keeping in mind that P1, P2 and u1
!, u2

! are in equilibrium, we get the following system:
oa1
ot þ u!� ra1

��!� Kdivð u!Þ ¼ 0;

oa1q1

ot þ divða1q1 u
!Þ ¼ 0;

oa2q2

ot þ divða2q2 u
!Þ ¼ 0;

oq u!
ot þ divðq u!� u!Þ þ rP

�! ¼ div
�!

l��sð Þ;
oE
ot þ divððE þ PÞ u!Þ ¼ div l��s � u!

� �
;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð5Þ
where K ¼ ðq2c
2
2 � q1c

2
1Þ=ððq1c

2
1=a1Þ þ ðq2c

2
2=a2ÞÞ ¼ a1a2ðq2c

2
2 � q1c

2
1Þ=ða1q2c

2
2 þ a2q1c

2
1Þ and subscript ‘‘o’’

has been omitted for the sake of clarity.

a1 denotes the gas volume fraction, a, so we have a2 = (1 � a), while q1 and q2 are the densities of phase 1
and 2. u!,P andE respectively represent the mixture velocity, pressure and total energy. The dissipative terms

are accounted for by a viscous stress tensor, l��s where l is a mixture dynamic viscosity. Their expressions are
l ¼ a1l1 þ a2l2; ð6Þ

��s ¼ � 2

3
div u!
� ���I þ 2��D; ð7Þ
where ��D ¼ 1
2

grad u!þ ðgrad u!Þt
� �

is the deformation rate tensor. The mixture density q is defined as

q = a1q1 + a2q2 and is a conserved variable. This model contains nice features for the modelling of interface
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problems. It naturally involves mechanical equilibrium between phases at any time which corresponds in

fact to the interface conditions when the normal velocities and pressures are equal. Another remark is re-

lated to the acoustic properties of this model. The mixture speed of sound, c, for this model reads
1

qc2
¼ a1

q1c
2
1

þ a2
q2c

2
2

;

where �

c2k ¼

Pk
q2k
� oek

oqk Pk

oek
oPk

�
qk
is the speed of sound in phase k. The mixture speed of sound, c is known as Woods� relation [58,31]. This

relation is in good agreement with experimental speed of sound measurements in liquid/gas mixtures. The
system is hyperbolic as long as the equation of state for each phase is convex. It possesses two entropies,

which are those of the general multi-phase flow model. They remain constant along streamlines. The pre-

ceding model (5), in absence of viscosity, has initially been derived by Kapila et al. in a different context.

The authors were seeking a reduced multi-phase model for dense mixtures of packed powder beds in which

drag and pressure relaxation effects are very fast [31]. Indeed, we have here recovered the same model where

granular-contact pressure and contact energy have been removed while viscous effects have been included

to model flow with interfaces. The volume fraction equation involves a velocity divergence term K divð u!Þ.
This term implies gas volume fraction increase across rarefaction waves and decrease across compression
ones. This is in agreement with the dynamics of an isolated bubble [19]. However, as we are interested in

two-phase flows between pure fluids, simplifications can be done.

2.4. The hydrodynamic model for interfaces

While the preceding model describes fluid mixtures, our aim is to model interfaces separating pure fluids.

Working with the previous model has some drawbacks: first the gas volume fraction positivity is not en-

sured by the model; and second, the shocks jump conditions is an issue [31]. Using it would lead to a useless
complexity with regard to the problems we are here interested in (interface flows).

We are looking for a model that tends to the Navier–Stokes equations in each pure fluid and that realise

their coupling across interfaces, so that we impose the gas volume fraction a not to vary across acoustic

waves. We can then neglect K divð u!Þ and obtain a simplified model which theoretically ensures gas volume

fraction positivity. At this point, the model is no longer a mixture model, but is valid only for interface

problems. The model including viscous effects now reads
oa1
ot þ u!� ra1

��! ¼ 0;

oa1q1

ot þ divða1q1 u
!Þ ¼ 0;

oa2q2

ot þ divða2q2 u
!Þ ¼ 0;

oq u!
ot þ divðq u!� u!Þ þ rP

�!þ div
�!ðl��sÞ ¼ 0;

oE
ot þ divððE þ P Þ u!Þ þ div l��s. u!

� �
¼ 0.

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ
The same simplification was done in the models of Massoni et al. [38] and Allaire et al. [2] in absence of

viscosity. The corresponding models, very closed to system (8) have shown their hability to provide reliable
results.
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Before examining model�s basic physical and mathematical properties (hyperbolicity, speed of sound, en-

tropy existence) let us provide the thermodynamic closure of the two preceding models.

2.5. Thermodynamic closure

Our aim with those models is to deal with artificial mixture zones. Indeed, in the context of Eulerian

methods, the numerical diffusion of contact discontinuities creates artificial mixtures. But as we have pre-

viously mentioned, the thermodynamic parameters of the cells in the smeared interface zone are unknown.

Nevertheless, their knowledge is mandatory for the interface pressure computation, unless any compress-

ible Eulerian method fails at the second time step [1,33,45]. The construction of a mixture equation of state

(EOS) is the cure to such a problem. Indeed, such an EOS must be able to describe the flow whatever the

location in the material, i.e. both in pure fluids and mixture zones. So, we first choose an EOS to describe

each pure fluid; second, we use those EOS to build the mixture EOS.
As our applications only involve liquid and gas, we use the Stiffened Gas EOS [22,24] to describe the

thermodynamics of those pure substances:
Table

Therm

Air

Water

Water

Coppe

Granit
Pk ¼ ðck � 1Þqkek � ckP1k . ð9Þ

ck and P1k are characteristic of the material. The terms associated to those parameters represent respec-

tively repulsive and attractive molecular effects. Those parameters (ck; P1k ) can be determined by asymp-

totic expansion over experimentally determined reference curves (Hugoniot and saturation curves). A

detailed procedure is proposed in [34]. The Stiffened Gas EOS has thus a wide range of validity. This

EOS is convex so that c2k ¼ �ðoek=oskÞqk remains positive. The associated speed of sound can be easily

expressed as ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ck

PkþP1k
qk

q
. In Table 1, thermodynamic data are gathered for several media at standard

state. As a consequence of this formulation, the mixture EOS will be also of Stiffened Gas type. Indeed, we

proceed as in [38] and [2] to build the required EOS. An isobaric closure is chosen, which is fully consistent

with the assumptions made during the asymptotic analysis (pressure equilibrium). The mixture internal en-

ergy definition reads
qe ¼ a1q1e1 þ a2q2e2.
By replacing each product qkek by a function of pressure with the help of Eq. (9) and by using the isobaric

closure, the mixture EOS reads
P ¼ c� 1ð Þqe� cP1; ð10Þ
where the mixture EOS parameters c and P1 are given by
1

c� 1
¼
X
k

ak
ck � 1

and cP1 ¼
P

k
akckP1k
ck�1P

k
ak

ck�1

.

1

odynamic Stiffened Gas EOS parameters for several materials

c P1 (Pa) c (m/s)

1.4 0 374

(atm. pres.) 4.1 4.4 · 108 1647

(high pres.) 4 6 · 108 1820

r 4.22 32.4 · 109 3910

e 2.6 14.2 · 109 3750
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The mixture EOS enables the interface conditions to be fulfilled at any time. It is now important to scan

some of the main properties of the model.

2.6. Properties of the simplified five equation model

In absence of viscous effects, this model corresponds to the ones presented in [38] and [2]. Note also that

model (8) is a generalisation of the models given in [1,49,45]. Indeed, in the particular case of ideal gases, the

mixture EOS reads
P ¼ qe
a1

c1�1
þ a2

c2�1

.

The mixture polytropic coefficient then reads
1

c� 1
¼ a1

c1 � 1
þ a2
c2 � 1
Since a2 = 1 � a1, and c1, c2 are constants, we deduce
da1
dt

¼ 0 is equivalent to
d

dt
1

c� 1

� 	
¼ 0.
This evolution equation on the polytropic parameter is the key point of the numerical approaches devel-

oped in the preceding references, but it was restricted to ideal or ‘‘stiffened’’ gases only. As shown in

[38], inaccuracies in the temperature computation were obtained. The present model does not suffer from

these drawbacks [38,2].

Note also that the Riemann problem structure is quite similar to the one of the Euler equations. The

reduced model has three eigenvalues k1 = u � c, k2 = u and k3 = u + c where c denotes the mixture speed
of sound. Compared to the model where K divð u!Þ was accounted for, the mixture speed of sound has

now a different behaviour. The quantity qc2 may be expressed as a sum of qkc
2
k weighted by bk functions:
qc2 ¼
X
k

bkqkc
2
k where bk ¼

ak
ck�1P
j

aj
cj�1

.

It may be written in compact form:
qc2 ¼ cðP þ P1Þ.

Functions bk remain positive whatever the behaviour of ak. It is then easy to conclude that qc2 is no longer

an harmonic average of qkc
2
k as for Wood�s formula but is a convex average of those quantities. The speeds

of sound for models (5) and (8) are now compared in the Fig. 1. The behaviour of model (5) is in better

agreement with experimental observations when dealing with physical fluid mixtures (bubbly flows for in-

stance). However, when dealing with artificial mixtures, the use of model (5) may yield the computation

failure. The speed of sound would be so low inside the numerical diffusion zone at interfaces that sonic
points may occur without any flow acceleration, yielding very difficult approximation of Riemann invari-

ants as well as Riemann solvers convergence. With model (8) the speed of sound does not imply such draw-

backs. Moreover, with the mixture Stiffened Gas EOS, a mixture entropy, s, and a phase entropy for each

fluid, sk, may be found explicitly:
sk ¼
P þ P1

qc
k

and s ¼ Y 1s1 þ Y 2s2;
where Y1 and Y2 are the mass fractions.



Fig. 1. Comparison of the speeds of sound for both reduced models (5) and (8).
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They obey the following evolution equations:
dsk
dt

¼ 0 and
ds
dt

¼ 0.
Riemann invariants across rarefaction or compression waves can be analytically integrated [2]. An exact

Riemann solver can thus be built. The exhibited model involves compressibility of each phase and presents

nice mathematical properties. We do not deepen here the analysis since we are interested in the final model,

which must include capillary effects. We now focus on such an extension.
3. A compressible two-phase flow model with surface tension effects

In some specific situations, even if the flow velocity is low enough to consider the flow as incompressible,

volume, density or temperature variations are such that a compressible approach is needed to fit the phys-

ical problem. Evaporation phenomena, cryogenics, cavitation and bubble collapse near a solid wall are

examples where compressibility plays a major role. For such phenomena, surface tension may also have

strong implications. Moreover growth of interface instabilities such as Rayleigh–Taylor or Kelvin–Helm-

holtz instabilities for instance, can be inhibited by surface tension effects. Indeed surface tension stabilizes

the interface because it smoothes any of its small disturbances. Up to our knowledge, surface tension effects

are computed within the incompressible framework whereas compressibility effects are either neglected or
poorly considered. Therefore a compressible model including surface tension effects would be useful. The

following paragraphs thus present the modelling of capillary effects within the compressible framework of

system (8). These developments are done in absence of viscosity.
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3.1. Conventional modelling

Most of physical problems that involve surface tension are considered in an incompressible framework,

where the interface is treated as a true mathematical discontinuity. Surface tension forces and local curva-

ture are determined easily as soon as the interface is accurately located [20,25,52,23].
Nevertheless, all incompressible algorithms do not describe interfaces without diffusion. The topic of dif-

fuse interfaces is precisely the context in which Brackbill et al. [8] proposed to model capillary effects. The

CSF (Continuum Surface Force) method has shown its efficiency and is widespread in the area of incom-

pressible flows [23,42,43,61].

On the contrary very few attempts for compressible flows can be noticed. In [29] and [30] a thermody-

namic framework based on Cahn–Hilliard model [11] was proposed. According to that theory, internal en-

ergy is not a function of flow variables only but also of their derivatives. Such mixtures are thus

characterised by a parameter k called inner tension coefficient. To compute physical surface tension driven
problems one has to set an interface thickness g in order to get the physical surface tension coefficient be-

tween fluids, r, by integrating the quantity kj$wj2 over the length g, where w is a so called order parameter.

The numerical resolution requires spatial resolution of the interface too and thus may lead to computa-

tional issues. This theory has been developed especially for water/steam binary mixtures where density ra-

tios remain low (less than 5) even if some recent attempts to extend such a formalism to flows far from the

critical point [30] are to mention.

Such models were initially derived to deal with capillary effects, compressibility and phase transition

across interfaces. They are built on the basis of a mixture equation of state for a liquid and its vapour. Their
extension to interfaces separating non-miscible fluids is not obvious, in particular because of the thermo-

dynamic closure which consider one temperature and entropy only. Indeed an interface separating fluids

is precisely a location of equal pressures and velocities, but different temperatures, densities and entropies.

As shown in [38], the here presented model involves two temperatures. Also, it does not contain any length

scale regarding the interface. It is considered as an artificial diffusion zone whose thickness depends only on

the numerical scheme and cell size. Moreover, there is no limitation regarding the density ratio. We will

show applications involving density ratios up to 1000.

Moreover, the mixture equation of state is not restricted to a system involving only a liquid and its va-
pour. Arbitrary EOS may be combined following the procedure described previously. The case of a liquid

and its vapour becomes a particular case. Associated EOS for liquid and vapour system under Stiffened Gas

formulation have been recently derived in [34].

3.2. Basic CSF method

In [8], the authors build a technique, which allows numerical diffusion of the interface to model surface

tension effects in an incompressible framework. This relies on the transformation of a surface force into a
volume one. According to [8], the surface force is equivalent to
F sv ¼ rj
rw
�!
½w� ;
where w denotes a colour function used to locate the interface, j is the local curvature, r is the surface ten-

sion coefficient which is supposed to not depend on space variables and [w] is the colour function jump

across the interface. Moreover the function w fulfils few requirements: (i) w must remain constant in each

fluid except in a very small neighbourhood of the interface; (ii) rw
�!

must always be oriented toward the

heaviest fluid; (iii) w must be continuously differentiable. Time evolution of function w is driven by its

own governing equation which is part of the chosen physical model.
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3.3. Extended CSF method: toward a conservative formulation of capillary effects

Surface tension contribution to energy balance has to be specified in order to extend the CSF method to

compressible flows. Modelling of surface tension force as a volume one into the momentum equation is the

basis of such an extension. For the reduced model the momentum equation becomes
oq u!
ot

þ div
�!ð u!� u!Þ þ rP

�! ¼ rj
rw
�!
½w� ;
where j ¼ �div
rw
�!
jrw
�!

j

 !
. In our framework, the liquid volume fraction fits the necessary requirements of

the colour function. Therefore, w is taken equal to the liquid volume fraction, a2, i.e.

w = a2 = 1 � a1 = 1 � a where a is the gas volume fraction.
Let m be the liquid volume fraction gradient. We note that [a] = 1 when the interface separates pure flu-

ids. So we get F sv ¼ �rdiv m
jmj

� �
m. A divergent form of this force can be obtained [23].

Let us denote T r the stress tensor due to surface tension: T r ¼ r jmj��I � m�m
jmj

� �
. The capillary force be-

comes F sv ¼ divðT rÞ. A conservative form of momentum equation is readily obtained:
oq u!
ot

þ div q u!� u!þ P��I � r jmj��I �m�m

jmj

� 	� 	
¼ 0.
This form is well known and even used to compute incompressible flows [23].

The power of the stress tensor, /r ¼ divðT r � u!Þ, is the contribution of the surface tension effects in the
energy balance. Therefore we speculate a form of the total energy equation as follows, where surface ten-

sion effects are considered:
oE

ot
þ divððEþ PÞ u!Þ ¼ /r;
where the mixture total energy, E, is expressed by E ¼ qeþ 1
2
q u!2

. e is assumed to be the sum of the internal

mixture energy e and of a surface energy, er,to be determined.

By expanding /r ¼ div T r � u!
� �

¼ div T r

� �
. u!þ T r :

��D where ��D represents the deformation rate tensor

defined by ��Dij ¼ 1
2
ui;j þ uj;i
� �

and by noting that T r :
��D ¼ rjmjdivð u!Þþ r djmj

dt , the energy equation becomes
oE

ot
þ div Eþ Pð Þ u!

� �
¼ div T r

� �
� u!þ rjmjdiv u!þ r

djmj
dt

.

Combining the preceding equation with the mass and momentum equations we obtain
de
dt

þ P
q
div u!þ der

dt
¼ 1

q
rjmjdiv u!þ r

djmj
dt

� 	
.

Assuming that mixture internal energy e depends on q, Y2, s and a, which are respectively mixture density,
mass fraction of phase 2, mixture entropy, and gas volume fraction, we can write
de ¼ oe
os

� 	
q;Y 2;a

dsþ oe
oY 2

� 	
q;s;a

dY 2 þ
oe
oa

� 	
q;Y 2;s

daþ oe
oq

� 	
s;Y 2;a

dq.
Moreover, /r only depends on ra
�!

and u! and does not affect neither entropy equation nor mass fraction
ones which remain
ds
dt

¼ 0 and 8k; dY k

dt
¼ 0.
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Thus we obtain
der
dt

¼ d

dt
r
jmj
q

� 	
.

It follows that potential energy exists for surface tension effects, whose expression is
er ¼ r
jmj
q

. ð11Þ
It is now easy to check that the conservative form of the total energy equation is
o E þ rjmjð Þ
ot

þ div ðE þ rjmj þ P Þ u!� r jmj��I �m�m

jmj

� 	
� u!

� 	
¼ 0;
where E ¼ qeðq; s; aÞ þ 1
2
q u!2

.

The resulting quasi-conservative formulation of the interface flow model with surface tension effects is
oa
ot þ u!� ra

�! ¼ 0;

oa1q1

ot þ div a1q1 u
!� �

¼ 0;

oa2q2

ot þ div a2q2 u
!� �

¼ 0;

oq u!
ot þ div

�!
q u!� u!þ P��I � r jmj��I � m�m

jmj

� �� �
¼ 0;

oE þ rjmj
ot þ div E þ rjmj þ Pð Þ u!� r jmj��I � m�m

jmj

� �
� u!

� �
¼ 0;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð12Þ
where q = a1q1 + a2q2. It is quite interesting to note that, if we expand the energy equation, the previous

quasi-conservative model can be written under the following non-conservative form:
oa
ot þ u!� ra

�! ¼ 0;

oakqk
ot þ div akqk u

!� �
¼ 0 8k 2 f1; 2g;

oq u!
ot þ div

�!
q u!� u!
� �

þ rP
�! ¼ �rjra

�!
;

oE
ot þ div

�!ððE þ PÞ u!Þ ¼ �rj u!� ra
�!

;

8>>>>>>><
>>>>>>>:

ð13Þ
where j ¼ �div
rð�aÞ
����!
jra
�!

j
¼ div ra

�!
jra
�!

j
.

3.4. The final model for compressible flows with interfaces including gravity, capillarity and viscous effects

We adopt the following model for compressible flows with interfaces including dissipative, capillary and

gravity effects to compute flows with interfaces:
oa
ot þ u!� ra

�! ¼ 0;

oa1q1

ot þ div a1q1 u
!� �

¼ 0;

oa2q2

ot þ div a2q2 u
!� �

¼ 0;

oq u!
ot þ div

�!
q u!� u!þ P��I � r jmj��I � m�m

jmj

� �
� l��s

� �
¼ q g!;

oE þ rjmj
ot þ div E þ rjmj þ Pð Þ u!� r jmj��I � m�m

jmj

� �
� u!� l��s � u!

� �
¼ q g!� u!;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ
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where a is the gas volume fraction, qk and q are respectively the density of phase k and the mixture density,

u!, P, (E + rjmj) are the mixture velocity, pressure and total energy. r is the surface tension coefficient, m is

the gas volume fraction gradient, l is the mixture viscosity and ��s is the mixture viscous stress tensor. g! is

the acceleration vector due to gravity.
4. Numerical method

The aim of this section is to present the various numerical procedures to solve system (14) with an Eule-

rian finite volume method. One of the main interesting feature of this model is that the same set of equa-

tions can be solved whatever the mesh point (mixture interfacial zone and pure fluids) by a single numerical

algorithm. The model involves three main effects: (i) acoustic and convective wave propagation; (ii) capil-

lary effects; (iii) dissipative effects due to viscosity. Thus, we develop the various ingredients and analysis for
the building of an appropriate hyperbolic solver which relies on Riemann solvers and Godunov scheme.

Capillary effects are directly involved in this solver. Then dissipative effects are addressed and solved in

the same finite volume framework.

4.1. Mathematical analysis and Riemann solver building

The present analysis is carried out in absence of viscous effects.

Rigorously speaking conventional analysis of the corresponding system cannot be done with usual meth-
ods commonly used for hyperbolic systems analysis. Indeed, the local curvature j whose expression is here-

after recalled j ¼ div ra
�!
jra
�!

j

� 	
is calculated thanks to the evaluation of the divergence of the unit normal to

the interface. Nevertheless, the vector ra
�!
jra
�!

j
will be considered as an independent variable. We thus assume

that local curvature is frozen at a given point and a given time. The term �rjra
�!

will be thus considered as
a first order derivative term to perform a preliminary analysis on this system. Moreover, we extend here the

notion of Riemann problem. Indeed, the Riemann problem is a one-dimensional notion whereas curvature

is intrinsically a multi-dimensional one. However we will use this extended designation in order to evaluate

some model�s properties including capillary effects. Indeed, we have to check whether the model respects the

Laplace law, which quantifies the pressure jump across a curved interface. Also, in order to build a corre-

sponding ‘‘extended Riemann solver’’, waves speeds, Riemann invariants, shock relations and interface

conditions have to be determined.

Most of the analysis is carried out with the model written under non-conservative formulation:
oa
ot þ u oa

ox þ v oa
oy ¼ 0;

oq1

ot þ u oq1

ox þ v oq1

oy þ q1
ou
ox þ

ov
oy

� 	
¼ 0;

oq2

ot þ u oq2

ox þ v oq2

oy þ q2
ou
ox þ

ov
oy

� 	
¼ 0;

ou
ot þ u ou

ox þ v ou
oy þ

1
q
oP
ox ¼ � rj

q
oa
ox ;

ov
ot þ u ov

oxþ v ov
oy þ

1
q
oP
oy ¼ � rj

q
oa
oy ;

oP
ot þ u oP

ox þ v oP
oy þ qc2 ou

ox þ
ov
oy

� 	
¼ 0.

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð15Þ
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From this formulation it becomes obvious that the mixture entropy equation is not modified by the intro-

duction of the capillary terms: ds/dt = 0. We can then proceed with the following analysis.

4.1.1. Jacobian matrices, eigenvalues, eigenvectors and associated approximate jumps

Model (15) is associated with the following Jacobian matrices in x- and y-directions:
AðUÞ ¼ oF ðUÞ
oU

¼

u 0 0 0 0 0

0 u 0 q1 0 0

0 0 u q2 0 0
rj
q 0 0 u 0 1

q

0 0 0 0 u 0

0 0 0 qc2 0 u

0
BBBBBBBB@

1
CCCCCCCCA
; BðUÞ ¼ oGðUÞ

oU
¼

v 0 0 0 0 0

0 v 0 0 q1 0

0 0 v 0 q2 0

0 0 0 v 0 0
rj
q 0 0 0 v 1

q

0 0 0 0 qc2 v

0
BBBBBBBB@

1
CCCCCCCCA
.

Let n! with n!t ¼ ðnx; nyÞ represent any vector of R2, then matrix An can be defined as An = nx Æ A + ny Æ B:
AnðUÞ ¼

un 0 0 0 0 0

0 un 0 q1nx q1ny 0

0 0 un q2nx q2ny 0
rj
q nx 0 0 un 0 nx

q

rj
q ny 0 0 0 un

ny
q

0 0 0 qc2nx qc2ny un

0
BBBBBBBBB@

1
CCCCCCCCCA
.

The An eigenvalues and eigenvectors may be exhibited. First, we note that the eigenvalues of the system

with capillarity and those of the system without capillarity are the same: k1 = un � c whose order of mul-

tiplicity is 1, k2 = un whose order is 4, and k3 = un + c whose order is 1, where un ¼ u!� n!. As c2 remains

positive with the Stiffened Gas equation of state, we conclude that eigenvalues are real. To be sure that

the addition of capillary terms does not influence the system�s hyperbolicity, eigenvectors have to be deter-

mined. The right eigenvectors related to un are
r21 ¼

0

1

0

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; r22 ¼

0

0

1

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
; r23 ¼

0

0

0

�ny
nx
0

0
BBBBBBBB@

1
CCCCCCCCA
; r24 ¼

1

0

0

0

0

�rj

0
BBBBBBBB@

1
CCCCCCCCA
.

Eigenvectors related to un + ec (where e 2 {�1; 1}) are
reþ2 ¼

0

q1

q2

ecnx
ecny
qc2

0
BBBBBBBB@

1
CCCCCCCCA
.

We can check the dimension of each eigenspace is equal to the order of multiplicity of each associated

eigenvalue. As we have seen every eigenvalue is real, An is thus diagonalisable and the systems is hyperbolic.
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Finally the corresponding approximate wave�s jumps, bi, can be determined. They are defined by the fol-

lowing formula:
Fig. 2

media
bi ¼ lti � DU ;
where li is the left eigenvector associated to the right eigenvector ri such that ltk � ri ¼ dki 8k. dki represents the
Kronecker symbol and DU = UR � UL. The corresponding approximate wave�s jumps for the present
model are readily obtained:
b1 ¼
DP
2qc2

� 1

2c
Dun þ

rj
2qc2

Da; ð16Þ

b21 ¼ Dq1 �
q1

qc2
DP � q1rj

qc2
Da; ð17Þ

b22 ¼ Dq2 �
q2

qc2
DP � q2rj

qc2
Da; ð18Þ

b23 ¼ Dut; ð19Þ

b24 ¼ Da; ð20Þ

b3 ¼
DP
2qc2

þ 1

2c
Dun þ

rj
2qc2

Da. ð21Þ
4.1.2. Laplace law

With the preceding approximate jumps it is possible to solve approximately an idealised Riemann prob-

lem where the interface has a prescribed curvature. Each wave is considered as a simple discontinuity as

schematised in Fig. 2.

The right and left states on both sides of the interface are given by the following relations:
W �
R ¼ W R � b3r3;

W �
L ¼ W L þ b1r1.
The pressure jump between these states is given by
DP � ¼ ðPR � PLÞ � ða3 þ a1Þqc2 ¼ DP � 2DP
2qc2

þ 2rjDa
2qc2

� 	
qc2 ¼ DP � ðDP þ rjDaÞ.
The approximate jump condition across any curved contact discontinuity when capillarity is accounted for

thus reads
DP � ¼ �rjDa. ð22Þ
. Approximate Riemann problem structure used for Laplace law checking. The curved interface (dashed line) separates two

travelled by acoustic waves.



Fig. 3. The various situations that may occur at a curved interface whose curvature is j separating a gas (G) and a liquid (L).
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This last equation is fully consistent with the Laplace formula. Indeed, if we consider a curved discontinuity

whose local curvature is j, between two pure fluids (jDaj = 1) the study of the various configurations which

appear at the interface location (Fig. 3) leads to the conclusion that whatever the case the Laplace law is

fulfilled.

4.1.3. Riemann invariants

Riemann invariants provide jump relations for rarefaction waves and contact discontinuity. They are

necessary features for the building of a Riemann solver. Riemann invariants across waves ke+2 = un + ec
where e 2 {�1; 1} can be explicitly determined in the context of the mixture Stiffened Gas equation of state

since the volume fraction remains constant across these waves:
U ¼ a; ut; un � e
2c

c� 1
; ðP þ P1Þq�c

1 ; ðP þ P1Þq�c
2

� 

.

Riemann invariants / across contact discontinuity are solution of the following equation:
o/
oq1

þ o/
oq2

� ny
o/
ou

þ nx
o/
ov

� rj
o/
oP

þ o/
oa

¼ 0. ð23Þ
The normal velocity obviously fulfils this last equation. The second invariant can be obtained if we assume
frozen local curvature j as it was suggested previously. Thanks to this assumption equation (23) is inte-

grated and we obtain the last invariant across any curved contact discontinuity / = P + rja. Riemann

invariants across contact discontinuities are thus:
U ¼ fun; P þ rjag

which are compatible with Laplace formula.

With the ingredients provided by the present analysis the Riemann problem can be solved as detailed
hereafter.
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4.1.4. An exact Riemann solver

Our aim is to solve system (12) with a Godunov type scheme. In this context the various inter-cell vari-

ables and fluxes are obtained as solution of Riemann problems. The specific form of the gas volume fraction

enables to build an exact Riemann solver for this model when the mixture EOS is of Stiffened Gas type.

Indeed, as a remains constant along streamlines, jump condition on gas volume fraction across shock
and rarefaction waves, is
½a� ¼ 0.
As Stiffened Gas EOS is used, analytical Riemann invariants have been obtained. The resulting exact Rie-

mann solver built for the set of variables a, q, u, v, P and one mass fraction Y k ð¼ akqk
q Þ, is very similar to the

one for the Euler equations [21,56]. Velocity and pressure solutions of the Riemann problem for the mixture

have the same expressions as those obtained for pure fluids except that in all formula c and P1 must be
replaced by functions of the gas volume fraction, c(a) and P1(a). These parameters are the mixture Stiff-

ened Gas parameters given by the mixture EOS. Partial densities are then computed by considering the

mass fractions Yk constant across shocks or rarefaction waves too.

However some remarks are due to the presence of capillary effects. Such effects are included directly into

the Riemann solvers. This is possible as long as the local curvature j is locally frozen. Indeed, neither Ran-

kine-Hugoniot relations and Riemann invariants are affected by the presence of capillarity. Across these

waves the volume fraction is assumed constant and a space derivatives are thus cancelled. Only the pressure

jump relation across contact discontinuities is modified (Eq. (22)). By replacing the pressure jump condition
across contact discontinuities, [P] = 0, by [P] = �rj[a], we finally obtain an associated exact Riemann sol-

ver with the model for flows with interfaces including capillary effects.

4.2. Numerical approximations

The method described in this paragraph relies on a finite volume approximation with a Godunov type

scheme of the capillary model given by system (12). Such method requires various ingredients as detailed

hereafter.

4.2.1. Geometrical approximations

The main geometrical ingredient for numerical simulations with the capillary model is the local curvature

at the cell centre and the cell boundaries. This last one is used in the Riemann solver, as previously detailed.

The local curvature is considered frozen during the time step and is obtained by the following algorithm.

First we need to determine the volume fraction gradients ra
�!

at each cell boundaries between cell Ci and

neighbouring cells Cj. To do this, we extend the numerical strategy proposed in [27,53,54] in the context of

viscous terms approximation to volume fraction gradient computation. This method uses two meshes.
From the finite volume mesh (called primary mesh in this approach) a secondary mesh based on the pri-

mary mesh cell centres is built, as shown in Fig. 4. Then, volume fraction gradients at cell centres of the

secondary mesh are obtained from the variables at cell centres of the primary mesh with the help of Green�s
formula, as detailed hereafter.

Let B be any primary mesh node. B is surrounded by four secondary mesh points we denote i, j, k and l

(Fig. 4). These points are the tops of a quadrangle denoted by QB whose edges are ij, jk, kl and li respec-

tively that we now denote by QB1
, QB2

, QB3
and QB4

. Let / be any flow variable. The value of / on these

segments is assumed to be the arithmetic average of the values at the ends. Thus, for an (ij)-edge, we
approximate
/ij ¼
/i þ /j

2
.



Fig. 4. Primary and secondary meshes to compute dissipative effects.
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Green�s formula thus provides the discrete formulation of the gradient of / at the primary mesh node B:
r/
�!� �

B
¼ 1

Xi

X
QBk

/QBk
n!QBk

;

where n!QBk
is the outward normal to QBk

.

Then, the gradient at the cell boundary of the primary mesh is approximated by
ðr/
�!ÞAB ¼ 1

2
ðr/
�!ÞA þ ðr/

�!ÞB
� �

.

The volume fraction gradients are thus obtained by changing / into a and applying the previous formulas.
Second, the cell centre mean curvature has to be determined. It is obtained by a discrete approximation

of the divergence theorem:
ji ¼ � 1

Xi

X
j

mij � n!ijlij; ð24Þ
where Xi represents the volume of cell Ci, and
mij ¼
ra
�!

ij

ra
�!

ij

��� ��� if jra
�!

ijj 6¼ 0;

0
!

otherwise.

8>><
>>:
Last, the cell boundary curvature is approximated by jij ¼ jiþjj
2
.

It is worth to mention that the preceding geometrical computations cannot be done from the initial con-

ditions where the volume fraction is discontinuous. To circumvent this difficulty a simple regularisation

procedure is adopted. During the 3 first time steps the curvature is set to zero everywhere and a diffusive

Riemann solver (Rusanov or HLL) is used instead of the one described previously. Such procedure smears

the interfaces over 2 or 3 points and enables the computation of the various geometrical approximations

described previously. After the 3 first time steps, the exact Riemann solver is used.

4.2.2. Hyperbolic operator

The hyperbolic operator consists in the numerical approximation of a quasi-conservative system: a

non-conservative equation regarding the gas volume fraction, a, is present. Moreover, the model involves

non-conventional fluxes. The adopted numerical strategy is detailed hereafter.
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Advection scheme for the gas volume fraction

Up to our knowledge, there is no strong fundamental basis to build an appropriate numerical scheme for

the gas volume fraction equation. Nevertheless, in [1,45] the authors propose a criterion which must be ful-

filled by the numerical scheme in order to compute flows with interfaces:

‘‘If an interface evolves under uniform pressure and velocity conditions, pressure and velocity must remain uni-

form during time evolution’’

That recommendation may be used as a guide to derive an appropriate numerical scheme. Combining mass,

momentum and energy equations, we find a result similar to the one obtained in [1,45]:
anþ1
i ¼ ani �

Dt
Dx

uni a�iþ1
2
� a�i�1

2

� �
.

As noticed in [38,2], such approximation is a particular case of the Godunov advection scheme:
anþ1
i ¼ ani �

Dt
Dx

ðauÞ�iþ1
2
� ðauÞ�i�1

2
� ani u�iþ1

2
� u�i�1

2

� �� �
.

This scheme has shown a better convergence for interface problems than the previous one [48]. Thus, the

Godunov scheme is retained in the present study. Its multi-dimensional extension reads
anþ1
i ¼ ani �

Dt
Xi

X
j

a�ij � ani

� �
u!�

ij � n!ijlij; ð25Þ
where Dt denotes the time step and the variables with an asterisk are solution of the Riemann problem de-

scribed previously and solved at the cell boundary ij.

One of the features of these advection schemes, combined with the conservative scheme used for the mass

equations presented hereafter, is that the pure phase densities qk are extended across the interface. Such

property is responsible for the correct computation of temperature on both sides of the interface, as well

as the ability to deal with more complex EOS than the Stiffened Gas one.

Treatment of the conservative part

In order to deal with the acoustic/convective part of the system the Godunov scheme for hyperbolic con-

servation laws is adopted. Let us define the conservative vector variable W t ¼ ðakqk; q u!;EÞ and associated

fluxes
FðW Þ ¼

akqk u
!

q u!� u!þ P��I � r jmj��I � m�m
jmj

� �
Eþ Pð Þ u!� r jmj��I � m�m

jmj

� �
� u!

2
6664

3
7775;
where E ¼ qeþ 1
2
q u!2

. e is the sum of the internal mixture energy e and the surface energy er ¼ r jmj
q . m rep-

resents the volume fraction gradient (m ¼ ra
�!

). The dissipative and gravity effects have been omitted from

system (14) for the sake of clarity. Thanks to this formulation, the conservative part of the capillary model

is updated by
W nþ1
i ¼ W n

i �
Dt
Xi

X
j

F�
ij � n!ijlij;
where F�
ij denotes the flux FðW Þ computed with the Riemann problem solution W �

ij obtained with the ex-

act solver presented previously. The Riemann problem is solved along the cell boundary normal. Such pro-
jection is achieved with a rotation matrix and its inverse. Associated details are quite conventional with
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finite volume methods for hyperbolic conservation laws. They are detailed in [56, pp. 543–549]. We prefer to

detail a little more the capillary fluxes approximation.

Compared to a conventional Euler solver, two extra fluxes are present, in the momentum and energy

equations:
F r ¼ div T r

� �
;

/r ¼ div T r � u!
� �

;

where the capillary stress tensor T r has been detailed in the modelling section.

Their numerical approximation is obtained as follows:
F ri ¼
r
Xi

X
j

jmjij n!ij �
mij � n!ij

jmjij
mij

 !
lij; ð26Þ

/ri ¼
r
Xi

X
j

jmjij n!ij � u!
�
ij �

mij � n!ij

jmjij
mij � u!

�
ij

 !
lij; ð27Þ
where Xi is the area of Ci, n!ij is the normal to the cell boundary between Ci and Cj, lij is the cell boundary

length and mij is the gas volume fraction gradient at the cell boundary.

Another feature, specific to the present model, has to be noticed. At the end of each computational time
step, the pressure has to be computed. In order to use the mixture equation of state (10) the mixture internal

energy e has to be extracted from the total energy:
E ¼ qeþ 1

2
q u!2 þ rjra

�!j.
As the volume fraction has been updated by the advection scheme (25), there is no difficulty to compute the

surface energy from a cell center volume gradient approximation. The following one has been retained:
ðra
�!Þi ¼

1

Xi

X
j

aij n!ijlij; ð28Þ
where aij = (ai + aj)/2.
One can thus deduce the mixture internal energy for each cell Ci. The volume fraction gradients are now

frozen for the entire time step tn+1.
The hyperbolic solver extends to second order, in order to sharpen gradients and in particular the inter-

face. Such extension is done without difficulty on the basis of the MUSCL strategy with flux limiters. The

details are given in the same book as previously recommended [56, pp. 470–476].

4.2.3. Wetting wall boundary conditions

Wall presence has a particular importance with capillary effects: rise of a liquid surface in a capillary tube

due to surface tension is a good example of the phenomenon we want to take into account. Such effects are

accounted for by the term # ¼ ðmij � n!ijÞ=jmijj which has a specific value for any given liquid and wall mate-
rial. # is the cosinus of the contact angle at the wall:
# ¼ mij � n!ij

jmjij
¼ cos heq.
The contact angle heq is an experimental data well documented in the literature, and available for most li-

quid and solid surfaces.
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As we have just seen, the wall proximity influences the topology of the contact line. So orientation of the

interface and thus of the gas volume fraction gradients mij at the wall are modified. Consequently, for any

mesh point neighbouring a solid surface, the surface tension flux balance (26) has to be computed with the

volume fraction gradient mij corresponding to the prescribed contact angle.

4.2.4. Viscous effects

The modelling of viscous effects relies on the definition of a stress tensor and a mixture dynamic viscos-

ity, l, whose expressions are recalled hereafter:
l ¼
Xd
k¼1

aklk and ��s ¼ � 2

3
divð u!Þ��I þ 2 � ��D.
Local contributions of viscous stresses to flux balances on momentum and total energy are
F l ¼ divðl��sÞ; ð29Þ

/l ¼ divðl��s � u!Þ; ð30Þ
where Fl and /l are to be solved by suitable approximations. These terms being of divergence form, their
numerical approximation over the computational cell reads
F li ¼ 1
Xi

P
j
lij

��sij. n!ijlij;

/li
¼ 1

Xi

P
j
lijð��sij � u!ijÞ. n!ijlij.

8><
>: ð31Þ
At every cell boundary the various variables appearing in these formulas have to be determined, in partic-

ular velocity gradients. To do this, the numerical strategy proposed in [27,53,54] is here also adopted. In-

deed, by replacing / in the formulas recalled in Section 4.2.1 by any of the velocity vector components, the

velocity gradients at the cell boundaries are obtained. Then there is no difficulty to compute the viscous

stress tensor and consequently viscous fluxes. We notice that the determination of u!ij is straightforward
from the Riemann problem solution.

This method, described in details in [27] in the context of Navier–Stokes equations, is simple and second

order accurate on cartesian grids. It was compared in [54] against the Blasius boundary layer solution and

provided excellent agreement. When dealing with distorted meshes, other options are possible [18].

4.2.5. Virtual state for non-slipping wall boundary conditions

For a viscous flow, velocity at the wall is zero. Thus we add a non-slipping wall condition, utjw = 0, to the

conventional non-porous wall condition, unjw = 0. Thus for any velocity vector u!i in a cell neighbouring a
non-slipping wall, the associated velocity vector of the virtual cell is � u!i.

A last remark ends this section. Gravity effects are accounted for by a conventional source term splitting.
5. Numerical validations and illustrations

The model and method capabilities are illustrated herein over physical problems involving surface ten-

sion, compressibility, viscous effects and gravity. Numerical tests are carried out to validate the numerical
method step by step: (i) surface tension effects; (ii) dissipative ones; (iii) more complex problems, involving

compressibility and the previous physical effects. Thus, several tests problems are examined: (i) Laplace

pressure differential and deformed drop oscillations due to surface tension forces; (ii) drop creation under

gravity effects; (iii) oscillations of a jet of viscous fluid; (iv) and bubble rise in a liquid bulk. For all these
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tests, computed results are compared to reference data (analytical as well experimental) [10,12,14,15,37,60].

We then illustrate the ability of the method over test problems involving coupled effects: compressibility,

viscosity and capillarity. Two examples are thus investigated: bubble explosion near a solid wall and col-

liding drops.

5.1. Dimensional analysis

Before going forward to these tests, a numerical difficulty has to be addressed: The explicit numerical

scheme developed in the preceding sections is restricted by the CFL condition. The speed of sound in

the liquid phase is very large so it may cause very small time steps. To circumvent this difficulty, we change

the space scale of the physical problem by carrying out a dimensional analysis. The analysis is based on

some useful dimensionless numbers. The first dimensionless number we use throughout this study is the

Bond number, Bo. It compares the capillary pressure to the other possible pressure contributions. When
gravity effects are of first order, the Bond number becomes:
Bo1 ¼
qgD2

r
;

where D and g respectively represent a characteristic length scale (typically the drop diameter) and the grav-

ity acceleration, r is the surface tension coefficient and q is the density. Otherwise, in low gravity environ-

ment the Bond number is based on surface tension and pressure, P:
Bo2 ¼
DP
r

.

The second dimensionless number we use is the Weber number, We, which compares surface tension effects

to inertial forces:
W e ¼
qU 2D
r

;

where U is a velocity scale. The third one is the Reynolds number, Re, which compares inertial forces to
viscous ones:
Re ¼
qUD
l

;

where l represents the dynamic viscosity of the fluid. In some particular cases (bubble rise in a liquid bulk

for example) some extra dimensionless numbers can be useful:

(i) the Eötvös number:
E€o ¼
gðql � qgÞD2

r

which is quite similar to the Bond number, except that the Eötvös number characterises liquid/gas

flows;

(ii) the Morton number:
M ¼
gl4

l ðql � qgÞ
q2
lr3

which quantifies the influence of gravity and viscosity forces with respect to capillary forces.
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Those dimensionless numbers are used to adjust surface tension coefficient, r, gravity acceleration, g,

dynamic viscosity, l, and even initial velocity conditions.

5.2. Comparisons to analytical laws

5.2.1. Laplace formula

It is well known that Laplace has quantified the pressure jump across a curved interface. This pressure

jump depends on the interface curvature and on the liquid–gas surface tension coefficient. In three dimen-

sions, a generalised form of this law can be written as follows:
DP ¼ rðj1 þ j2Þ;

where DP is the pressure jump, r the surface tension coefficient, and j1 and j2 are the main local interface
curvatures. We want to compare the numerical results to the analytical law to be sure that the present

model reproduces Laplace results.

To do this, we consider a cylinder, whose radius is R = 0.15 m which is centred on the point

(0.5 m; 0.5 m). The cylinder is filled with liquid, whose thermodynamic parameters are cl = 2.1 and

P1l ¼ 107 Pa and is surrounded by air, whose parameters are cg = 1.4 and P1 = 0 Pa. According to the gen-

eralised Laplace law, the predicted pressure jump is: DP = r/R where R is the cylinder radius. The compu-

tational field is a square, whose edge is one-metre long. The computations have been performed over a

various range of grids, from very coarse grids (70 · 70 cells) to fine ones (200 · 200 cells) using the conser-
vative scheme to model surface tension effects. Fig. 5 shows the evolution of the relative error between the

computed pressure jump and the theoretical one according to the number of points in each direction. The

numerical pressure inside and outside the drop as well as numerical drop radius are built on the basis of an

averaging procedure depending on a limit value for the gas volume fraction: we consider that the cells which
Fig. 5. Relative error of the computed pressure jump to analytical one according to the grid size.
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are inside the drop are characterised by a < 0.1. The drop is paved by telling which cells are inside the drop

and those outside it. We thus find an approximate area for the cylinder and we get the corresponding radius

by assuming that the drop remains circular. Fig. 5 shows that the error remains small even for coarse grids.

We can also note that numerical error decreases with the cell size: the method is mesh convergent. Laplace

law is well reproduced by the method.

5.2.2. Parasitic currents

Many authors have studied these phenomena [23,29] which appear at the interface. Parasitic currents are

due to the competition between dissipative effects due to viscous stresses and capillarity. They are damage-

able because, first, they are unphysical, and second, they may lead to computational failure because of

interface distortions. A miscomputation of the value of the local curvature, j, may amplify these phenom-

ena. Some authors [28,29] have shown that a conservative formulation of capillary effects on the momen-

tum equation and especially on total energy equation may lead to the attenuation and even to the
disappearance of parasitic currents. Aware of those drawbacks, we have performed a preliminary study

of the possible appearance of those currents in our method. Our experience in the various tests shown in

this article indicates that the magnitude of the parasitic currents is always very small, at least to preserve

results validity when compared with experiments and to never lead to computation�s failure.
But we have to investigate a little bit further before concluding that parasitic currents do not exist within

our method. Indeed it has been shown that they strongly depend on the viscosity and on the Ohnesorge

number ðOh ¼ lðqgrDÞ�
1
2Þ. Both are influenced by numerical diffusion of the interfaces, which can be con-

sidered as another kind of viscosity. A proper theoretical analysis is therefore quite difficult to perform in
the present framework, but is an interesting perspective.

In the following subsections, we proceed with the model validations.

5.2.3. Oscillations of an ellipsoidal drop

The behaviour of a deformed drop under surface tension effects is very useful test to check the ability of

the method to manage the dynamics of these instabilities. We consider a deformed drop whose ellipsoidal

shape is given by the following equation:
ðx� 0.5Þ2

0.22
þ ðy � 0.5Þ2

0.122
¼ 1.
The computational domain is still a square, whose edge is also one-metre long. The mesh involves

111 · 111 cells. The time step used here is Dt = 1 ls. Surrounding air is considered as an ideal gas

(cg = 1.4, P1g ¼ 0, qg = 1 kg/m3) while the liquid thermodynamic parameters are cl = 2.4 and

P1l ¼ 107 Pa and density is ql = 100 kg/m3. Fig. 6 shows the time evolution of the global average ki-

netic energy, which is evaluated on the entire domain. The deformed interface is initially at rest, so that
kinetic energy is zero. Then interface moves because of surface tension forces. The drop gets a circular

shape for an instant. But at that moment, most of the potential energy due to surface tension is con-

verted into kinetic one so that the drop cannot stay in this equilibrium state but goes on deforming

onto an ellipse. This ellipse is also a shape for which all the kinetic energy has been converted into

potential energy: the velocity is close to zero everywhere but interface deformation is large. Capillary

forces induce next the return to the circular shape and so on. The oscillations are thus due to the trans-

fer of energy between its potential capillary part and kinetic one.

The physical period corresponds to two periods of the kinetic energy evolution in Fig. 6. The average
evaluated radius for the equivalent circular drop is 0.15825 m. This radius is still computed by paving

the drop. The numerical period of radius oscillations is then: T = 0.0863 s. This last value is to compare

to the theoretical one. According to the modified Rayleigh formula [44], which has been extended to



Fig. 6. Kinetic energy versus time and link with the evolution of the drop shape.
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two-phase flows [17], the pulsation of a deformed liquid drop (ql) that is surrounded by another fluid (qg), is
given by the following expression:
x2 ¼ ðo3 � oÞ r

ðql þ qgÞR3
and T ¼ 2p

x
; ð32Þ
where o is the oscillation mode and R is the drop radius at equilibrium state. In our case the mode of oscil-

lation is 2. Then the theoretical value of the period is T = 0.0878 s. The error on the evaluation of the period

is about 2%. Dynamic as well as static behaviours are thus well predicted.

5.3. Liquid break-up under gravity effects

The following test shows that interface creation is also possible with the present Eulerian method.

The physical problem we want to model is the drop formation and liquid break-up due to gravity accel-

eration (g = 9.81 m/s2) acting on a water drop (r = 73 · 10�3 N/m). The physical test one may imagine in-

volves a 1.3 cm radius drop, which falls because of gravity from an upper wall. The associated Bond

number is equal to 5.71.

For computational convenience, the drop radius is taken equal to 0.25 m. The drop is centered on the
point (0.5 m; 1.6 m). According to the Bond number, we adjust surface tension coefficient, r = 175 N/m,

where gravity acceleration, g, is taken equal to 25 m/s2. The vector g! is oriented downward in the

y-direction.

The cap is hung on the upper wetting wall thanks to surface tension effects. The contact angle at the wall

boundary is taken equal to
h ¼ 25�.



Table 2

Fluids characteristics for liquid mass under gravity effects

c P1 (Pa) q (kg/m3) u (m/s) v (m/s) P (Pa)

Gas 1.4 0 1 0 0 105

Liquid 4.1 5 · 107 103 0 0 105
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Initial pressure is uniform and equal to P = 105 Pa. The thermodynamic coefficients for Stiffened Gas EOS

are given in Table 2.

The computational domain is 1 m wide in x-direction and 1.5 m high in y-direction. The associated mesh

is composed of 200 · 300 computational cells. The computation is second order accurate in space and time.

The calculation is performed with an imposed time step, Dt = 1 · 10�6s and over 800,000 time steps. The

results presented in Fig. 7 are in good agreement with common observation. They correspond to a physical

duration of 0.6 s. The spherical cap is quickly distorted due to gravity (Fig. 7(b)). It still sticks to the wall

because of tension effects. The drop formation appears in Fig. 7(c) meanwhile part of the cap is still retained
by the upper wall. The drop continues its formation and lengthens (Fig. 7(d)). The drop ‘‘neck’’ gets thinner

and thinner until it reduces only to one point (Fig. 7(e)). At this very moment the liquid surface breaks up

into several drops (a major one and several little others) which evolve freely as shown in Fig. 7(f). The mass

of the drop which remains stuck to the upper wall is not sufficient to make it fall. Surface tension is thus

predominant and drop still sticks to the upper wall in spite of some brief oscillations. The major drop keeps

on falling down while oscillating to get back to a circular shape because of surface tension (Fig. 7(g) and

(h)). The falling secondary drops even merge as Fig. 7(i) shows.

In Fig. 8, the behaviour of drop creation from both numerical (bottom) and experimental (top) results
are compared. Even if computation have here been performed in a two-dimensional framework, experiment

and numerical results are in good qualitative agreement. Other 2D tests have been achieved in view of quan-

titative comparisons. They no longer involve water but ethanol. This last fluid has been preferred because

ethanol surface tension coefficient is lower than water one. Thus the liquid filament between injector and

drop body is longer than with water. The filament break-up can thus be studied in more details.

The ethanol (99.99%) is injected through a pipette of 1 mm outer diameter. The created drop diameter is

then 2.3 mm. The surface tension coefficient and density for ethanol are
rethanol ¼ 22.6� 10�3 N=m and qethanol ¼ 787.9 kg=m3.
The Bond number is based on drop radius. It is equal to Bo = 0.931. Dimensional analysis gives an equiv-

alent surface tension coefficient to compute a physically suitable behaviour:
rnum ¼ 332 N=m.
The other fluid characteristics are summarised in Table 3. The results show a satisfactory agreement be-

tween experimental and numerical profiles in Fig. 9. As we can notice in Fig. 10 the accuracy of the numer-

ical results is improved, when axisymmetric effects are involved: the comparison presented in Fig. 10 shows

a perfect agreement between both profiles. Two different instants are presented. The result accuracy is thus

not time dependent.
The various preceding tests have shown the ability of both model and numerical method to manage large

interface deformations as well as dynamic interface appearance and disappearance. The computed results

are in very good agreement with experiments.

5.3.1. Validation of viscous effects – 2D instabilities of a viscous jet

In the present subsection, we examine the ability of the model to compute 2D viscous flows with inter-

faces. The studied example consists of hydrodynamic instabilities of a highly viscous liquid jet flowing



Fig. 7. Drop break-up and falling under gravity effects.
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Fig. 8. Drop creation under gravity: qualitative comparison between experimental behaviour (top) – courtesy of D. Brutin (IUSTI) –

and numerical 2D-behaviour (bottom).

Table 3

Fluid characteristics for the comparison with ethanol

c P1 (Pa) q (kg/m3) u (m/s) v (m/s) P (Pa)

Gas 1.4 0 1 0 0 105

Liquid 2.1 2 · 107 0.7879 · 103 0 0 105

Fig. 9. Experiment and 2D computations (line). No axisymmetric effects.
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under gravity, as shown in Fig. 11 by the experimental work of Cruickshank et al. [12]. This type of viscous

instabilities appears under specific conditions [55]: (i) the ratio H
D has to fulfil the following inequality,

H
D > 3p, where D and H are respectively the injector diameter and the distance between the injector and

the plate; (ii) the Reynolds number, based on the injector diameter, has to be less than 0.56.



Fig. 10. Comparison between experiment (picture) and computations (line) considering axisymmetric effects.

Fig. 11. Experimental study of 2D instabilities of an injected viscous jet from [12].
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The computational parameters we have chosen are reported hereafter. The computational domain is a

1 m · 1.3 m rectangle. The injector diameter is equal to 0.1 m while the inlet flow velocity is 1 m/s. The mesh

involves 100 · 130 computational cells. The injector is located at the upper frontier of the domain at x-coor-

dinate 0.5 m. The physical parameters of the injected fluid are: cl = 5.4, P1l ¼ 3 � 107 Pa,

ql = 1800 kg m�3, and ll = 550 kg m�1 s�1. The surrounding air is considered as a perfect gas whose isen-

tropic coefficient is cg = 1.4. Its density is taken equal to 1 kg m�3. Air dynamic viscosity equals

lg = 10�6 kg m�1 s�1. The initial pressure is P = 105 Pa and gravity acceleration is taken equal to

g = 9.81 m/s2.
A second order accurate in space and time computation is performed using a fixed time step,

Dt = 1.5 · 10�6 s over two-million iterations. The geometric and dynamic conditions are fulfilled so that

instability regime may occur. Numerical results are shown in Fig. 12. The jet spreads into the domain while

its base shrinks because of gravity (Fig. 12(c)). The jet keeps a symmetric shape until it reaches the under-

neath plate (Fig. 12(d)). It then oscillates (Fig. 12(f)–(h)) because of the viscous strains which induce the

instabilities due to the very large dynamic viscosity ratio between liquid and gas ll
lg
> 107

� �
. The liquid fills

the domain and the free surface rises (Fig. 12(i)). Once the free surface reaches an altitude so that the geo-

metric condition is no longer fulfilled H
D < 3p
� �

, the oscillations stop and the jet gets back to its symmetric
shape. The numerical results are thus in a very good qualitative agreement with Cruickshank�s experiments

[12].



Fig. 12. 2D Oscillations of a viscous jet under gravity effects.
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5.4. Coupled effects

The aim of this section is to demonstrate model�s capabilities over several tests involving coupled effects
with capillarity, viscosity, gravity and compressibility.
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5.4.1. Rise of a gas bubble in a liquid bulk

We study hereafter the influence of surface tension, viscosity and gravity on the shape of a gas bubble

rising in a liquid bulk. To deal with such a study we need extra dimensionless numbers: Eötvös ðE€oÞ and
Morton (M) numbers.

This test is particularly interesting because many experimental results are available. For given Reynolds,
Morton or Eötvös numbers the bubble shape has been reported as provided by Fig. 13. The computational

domain used herein is a one-metre square involving 90 · 90 mesh cells. The bubble is initially deformed as

an ellipse. It is centred on the point (0.5 m; 0.12 m). The lower side of the domain is a wall while absorption

conditions are imposed on the other boundaries. The computation is second order accurate in space and

time and the time step is Dt = 5 · 10�6 s. The thermodynamic parameters of the liquid are cl = 2.1 and

P1l ¼ 2 � 107 Pa, its dynamic viscosity is ll = 1 kg m�1 s�1. Its density equals ql = 1000 kg m�3. The

gas is a perfect one (cg = 1.4) whose density is 1 kg/m3.

The computations are performed at constant Reynolds number, Re ¼ qljV l�V g jD
ll

, which is equal to 110.
The results of two computations are shown in Fig. 14(a) and (b) where the Eötvös numbers are respectively

E€o ¼ 784 and E€o ¼ 130. As geometrical bubble characteristics remain unchanged between the two tests,

Eötvös number varies only because of surface tension coefficient variations. The obtained results are very

similar to those of Leveque et al. [36]. Because of the surface tension, the initial ellipse tends to a circular

shape, which is its least energy profile. Bubble rises to the upper side of the domain because of the buoyancy

forces. Viscous stresses tend to attenuate velocity difference between liquid and gas, while capillarity guar-

antees the bubble cohesion. We have to note first that the higher the Eötvös number is, the less the capillary

effects act. Thus, in Fig. 14(a), where E€o ¼ 784 surface tension forces are not strong enough for the interface
to keep its cohesion: while it rises, the bubble is submitted to large distortions so that break-up tends to
Fig. 13. Experimental bubble shape versus Reynolds, Eötvös and Morton numbers.



Fig. 14. Rise of a gas bubble in a viscous fluid bulk: (a) E€o ¼ 784; Re ¼ 110; (b) E€o ¼ 130; Re ¼ 110.
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occur. In the second case, where surface tension forces are stronger and make the interface more rigid, such

distortions cannot happen and the bubble shape remains quite spherical. If we locate those configurations

in Fig. 13, we remark that the computed profiles are in very good agreement with the experiments.

5.4.2. Bubble explosion near a solid wall

We now deal with the simulation of gas bubble explosion and collapse near a solid wall. Such a situation

appears in liquid cavitation that results in bubble creation near solid surfaces. The bubble collapse results in

a high velocity liquid jet that hits the wall producing a local high pressure. When such an event is million
times repeated, it may cause structure erosion and rupture. To deal with such applications, compressible

effects have to be considered. Indeed, the initial pressure ratio between the gas and the liquid produces a

shock wave, which propagates within the liquid. Part of the initial gas energy is transferred to the liquid

by this wave. The wave also sets the liquid into motion while the bubble expands as well as the gas inside.

The radial liquid flow stores kinetic energy and impulse. Compared to the gaseous phase, the liquid is very

heavy. Its inertia induces an overexpansion of the gas that reaches very low pressure. The motion is thus

inverted and the bubble expansion is followed by an implosion stage. As boundary conditions are not sym-

metrical because of the wall presence, the bubble implosion occurs with a high velocity liquid jet.
A numerical study of such a phenomenon has been carried out in [59]. In that reference, liquid is con-

sidered as incompressible. The authors used a Boundary Element Method (BEM) to compute the liquid

dynamics. They so neglected the wave dynamics within the liquid, which certainly leads to an overestima-

tion of the bubble expansion. In the present work, the liquid and gas compressibilities are inherent features

of the model. The computational domain used for the computation corresponds to a two-metre edged

square. the boundary conditions are absorption conditions everywhere except at the wall boundary, which

is located at the lower edge, where a wetting non-sliding condition is imposed. A gas bubble, whose radius is

8 cm, is centered on the point (1 m; 0.2 m), close to the wall. The pressure inside the bubble is 3 · 106 Pa
(Table 4).
Table 4

Fluids characteristics for the test related to the bubble explosion near a solid wall

c P1 (Pa) l (kg/m/s) q (kg/m3) u (m/s) v (m/s) P (Pa)

Gas 1.4 0 1.1 · 10�5 10 0 0 105

Liquid 5 2 · 108 10�3 103 0 0 3 · 106



Fig. 15. Bubble explosion near a solid wall (1/2).
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Fig. 16. Bubble explosion near a solid wall (2/2).
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The dimensionless parameters for this computation are the Bond number Bo = 0.95 and the Morton

numberMo = 2, 5 · 10�11. The numerical bubble corresponds to a physical 1.3 mm radius bubble. The wet-

ting contact angle on the lower wall is heq = 15�.



Table 5

Fluids characteristics for drop colliding

c P1 (Pa) l (kg/m/s) q (kg/m3) u (m/s) v (m/s) P (Pa)

Gas 1.4 0 10�5 1 0 0 105

Liquid drops 5 108 10�3 103 ±5 0 105

Fig. 17. Colliding liquid drops.
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The computation is second order accurate in time and space over a grid involving 181 · 181 cells. It is

performed using a fixed time step, Dt = 7 · 10�7 s, over 4 · 106 time steps. The results show the various

stages of the physical phenomenon in the Figs. 15 and 16: the expansion stage is clearly visible in Fig.

15(a)–(c); then the bubble collapse appears in Fig. 15(d) and (e); jet formation stage can be clearly deter-

mined in Fig. 15(f) and in Fig. 16(a); the cylindrical bubble is then split into two sub-bubbles as it is shown
in Fig. 16(b) and (c); the evolution of the vortex pair is shown up to this point. Other applications of interest

involving shock waves and gas–liquid interfaces are presented in [9].

5.4.3. Colliding drops of a viscous fluid and break-up

We give here an example of numerical results obtained for the treatment of head-on collision of two

liquid droplets moving at a relative velocity of 10 m/s. Capillary, viscosity, and obviously compressibil-

ity are accounted for in the computation. The computational domain is a 1 m · 1 m square, which is

discretised by a mesh involving 151 · 151 cells. Drops, whose radii are 0.1 m, are initially located at
points (0.3 m; 0.5 m) and (0.6 m; 0.5 m) (Table 5). Surface tension coefficient is taken equal to

r = 831 N/m. Capillary effects are accounted for as well as viscous effects. Neither gravity nor axisym-

metric effects are here considered. The computation is second order accurate. The imposed time step is

Dt = 1 · 10�6 s and the calculation is performed over 800,000 time steps. Numerical results are shown in

Fig. 17. On the two first graphs of Fig. 17 the two drops collide and their free surfaces merge. Forces

of inertia and impact pressure expulse liquid matter away from the impact point. Capillary forces and

inertia forces are here in competition. The expansion, which is visible in Fig. 17(c) induces the shrinking

of the liquid filament in Fig. 17(d). The filament breaks up in Fig. 17(e) and at that moment, a sec-
ondary drop appears. The two major liquid drops then oscillate to restore a circular shape 17(f).

The oscillations are smoothed and dissipated by viscous effects. At every time, the problem symmetry

is preserved by the computation. This example shows that the model and the method are able to sim-

ulate drop break-up and interface oscillations in a quite complex context, where compressibility, capil-

larity and viscosity are taken into account.
6. Conclusion

A quasi-conservative hyperbolic compressible flow model with capillary and viscous effects has been

developed for the numerical simulation of flows with material interfaces. A robust and simple algorithm

has been developed for its numerical approximation.

Several tests have been performed over a wide range of physical problems involving droplet break-up,

bubble coalescence, instabilities of a viscous jet, underwater explosions, rise of a gas bubble in a liquid bulk.

The method is thus able to compute flows between non-miscible fluids, with high density and viscosity

ratios, where large deformations of the interface occur. The method deals with dynamic appearance and
disappearance of free surfaces.

Deeper analysis is to be done regarding parasitic currents. Also, model extension in the presence of heat

and mass transfer is under study [35].
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